门捷列夫和他的要素周期表

  前几回说到化学家们为发现新元素真是废寝忘食,绞尽脑汁。他们在元素王国这片陌生的土地上东奔西突,左砍右杀。各人祭起自己的法宝,八仙过海各显神通。那戴维用的是一把电斧,东劈西砍发现了钾、钠等十几种元素;那本生、基尔霍夫用的是一柄光剑,一路刺开去找见了钝和铷;瑞利和拉姆赛则使的一把牛耳尖刀,专爱一层一层地剥竹笋,这就是分馏法,他们终于发现了氦、氛、氩、氪、氙等惰性气体。到此化学家们已将所能使的各种化学、物理方法都已用尽。十九世纪中期,元素也已发现到了第63种,又是山穷水尽再无路了。而且就是已发现的这63种元素也够使化学家们眼花绕乱的。你看:有那硬的、一刀剌下不伤分毫;有那软的,指甲掐去如碰豆腐;有那性格沉稳的,任怎样摆弄也不去与别人结合;有那脾气暴躁的,放在空气中就冒火;更有那一物多变的,如磷,有红,有黄;如碘,有时棕色,有时紫色。就是一块灿烂的黄金,当把它打成极薄的箔片时竟会变成蓝绿,而且还透明呢。现在不要说再去发现新元素了,就是先把这63种分分类,排排队也无从下手。这化学,真是刚从泥滩里拔出来,又在森林里迷了路,不知如何是好。

门捷列夫 — 俄国化学家。

  物质构造的探讨

  话说公元1867年俄国彼得堡大学里来了一位三十三岁的化学教授门提列夫(1834-1907)。此人身材修长,眉清目秀,一看就是那种才华横溢,精力过人的青年学者。只要他一出台讲课,教室门里门外,窗沿上,台阶下都挤满了学生。那奇妙的化学变化伴着他沉稳的手势和多彩的语言,直把听者吸引得就如钉钉死、胶粘住一般。连学校当局也暗自高兴聘了一个好教授。但是这门捷列夫却有两样毛病,一是爱喝酒,二是爱玩牌。他平时备课,桌子上就是少了纸笔也少不得一滴白兰地一只银杯。要是有一点伤风感冒的小病,他从不上医院,最妙的办法就是一仰脖子,咕嘟嘟半瓶酒下肚,然后拉过一件老羊皮懊,浑身一裹,往沙发上一滚,呼噜噜地睡上一觉,什么头痛脑热都会在梦里云散烟消。他身为化学教授大部分时间不是在实验室渡过,而是将自己关在书房里,手里总捏着一副纸牌,颠来倒去,整好又打乱,乱了又重排,也不邀请牌友,也不去上别人家的牌桌,真不知他这个牌是怎样的玩法。

1834年2月7日生于西伯利亚托博尔斯克,1907年2月2日卒于彼得堡。1850年入彼得堡师范学院学习化学,1855年毕业后任敖德萨中学教师。1857年任彼得堡大学副教授。1859年他到德国海德堡大学深造。1860年参加了在卡尔斯鲁厄召开的国际化学家代表大会。1861年回彼得堡从事科学著述工作。1863年任工艺学院教授,1865年获化学博士学位。1866年任彼得堡大学普通化学教授,1867年任化学教研室主任。1893年起,任度量衡局局长。1890年当选为英国皇家学会外国会员。

  工业革命兴起后,机器大工业所产生的精密天平、分光仪器、化学试剂、电解方法等,为化学研究提供了大量新课题和物质技术手段。

  再说化学界因为那些难以捉摸的元素正闹得乱轰轰的,莫衷一是。1869年3月,俄罗斯化学会专门邀请各方专家进行了一次学术讨论。学者们有的带着论文,有的带着样品,有的带看自己设计的仪器当场实验,各抒己见,好不热闹。而那个门捷列夫只身空手,裹一件黑色外衣,蓄着一把小胡子,静坐在桌子的一角,三天来不言不语,只是瞪着一双大眼睛看,竖起耳朵听,有时皱皱眉头想。这天眼看会议日程将完,主持人躬身说道:“门捷列夫先生,不知你可有什么高见?”只见门捷列夫也不答话,起身走到桌子的中央,右手从口袋里抽了出来,随即就听唰啦一声,一副纸牌甩住了桌面上,在场的人无不大吃一惊。门捷列夫爱玩纸牌,化学界的朋友也都略有所闻,但总不至于闹到这步田地,到这个严肃的场合来开玩笑。在座的有一位长者寿眉双重,银须齐胸,他叫齐宁,是门捷列夫的老师,过去很赏识门捷列夫的才华,推荐他来校任教。今天他见学生这样开玩笑心中早已不快。只见门捷列夫将那一把乱纷纷的牌捏在手中,三两下便已整好,并一一亮给大家看。这时人们才发现这副牌并不是普通的扑克,每张牌上写的是一种元素的名称、性质、原子量等,共是63张,代表着当时已发现的63种元素。更怪的是这副牌中有红、橙、黄、绿、青、蓝、紫七种颜色。门捷列失真不愧为一个玩纸牌的老手,他用拇指和食指轻轻一捻,纸牌由红到紫使成一排,再一捻又是一排。这样前排靠着后排,整整齐齐,竟在桌上列成了一个牌阵。要是竖看就是红、橙、黄……分别各成一列。门捷列夫将这个牌阵排好,叫大家看个明白,然后用手一搅,满桌只见花花绿绿,横七竖八,不过是一堆五彩乱纸片。他说:“这混乱的一团;就是我们最感头疼的元素世界。实际上这些元素之间有两条暗线将它们穿在一起。第一,就是原子量。尽管不同元素有时会有相似的某种特性,尽管同一元素不同情况下又会表现出不同的颜色、形状,但有一点它们却永不会变,就是各自有自己特有的、互不重复的原子量。因此,我们可以根据原子量的大小将它们排成一条长蛇。”

门捷列夫的最大贡献是发现了化学元素周期律。他在批判继承前人工作的基础上,对大量实验事实进行了订正、分析和概括,总结出一条规律:元素(以及由它所形成的单质和化合物)的性质随着原子量(现根据国家标准称为相对原子质量)的递增而呈周期性的变化。这就是元素周期律。他根据元素周期律编制了第一个元素周期表,把已经发现的63种元素全部列入表里,从而初步完成了使元素系统化的任务。他还在表中留下空位,预言了类似硼、铝、硅的未知元素(门捷列夫叫它类硼、类铝和类硅,即以后发现的钪、镓、锗)的性质,并指出当时测定的某些元素原子量的数值有错误。而他在周期表中也没有机械地完全按照原子量数值的顺序排列。若干年后,他的预言都得到了证实。门捷列夫工作的成功,引起了科学界的震动。人们为了纪念他的功绩,就把元素周期律和周期表称为门捷列夫元素周期律和门捷列夫元素周期表。

  玻义耳在18世纪提出元素概念,把化学确立为科学。紧接着拉瓦锡提出燃烧的氧化学说,推翻了燃素说,使化学走L了正确的发展道路。

  说着,门捷列夫十指拨弄一番,一堆乱牌变成整齐的一线。谁知这一排,却明显地看出那七种颜色的纸牌就像画出的光谱段一般,有规律地每隔七张就重复一次。门捷列夫又将其一截截地断开,上下对齐说:“可见,按原子量的大小,元素的性质在做看有周期的重复。如果竖看看,每一列的元素性质相似,这就是第二条暗线——原来每列元素的化合价相同。你们看,左边这列红纸牌上标的是:氢、锂、钠、钾、铷、铯,它们都是一价元素,性质活泼,除氢外都是硷金属。它们构成相似的一族,而在这一族里因原子量的递增,元素的活泼性也在递增,锂最轻,原子量是7,也最安静,落到水里只发一点嘶嘶声,钠的原子量是23,落到水面上就不安地又叫又跑;钾的原子量是40,落到水面上会尖叫着乱窜、爆响,还起火焰;要是排尾的那个铯,原子量是133,简直不能在空气里呆一秒钟,立即就会自己燃烧起来。这63种元素,原来就这样暗暗地由原子量这条线穿起来,又分成不同的族,每族有相同的化合价,按周期循环,这就是周期律,元素周期律。”

元素周期律的发现激起了人们发现新元素和研究无机化学理论的热潮,元素周期律的发现在化学发展史上是一个重要的里程碑,它把几百年来关于各种元素的大量知识系统化起来形成一个有内在联系的统一体系,进而使之上升为理论。

  19世纪,化学由它的经验阶段迈进到理论阶段,建立了由无机化学、有机化学、分析化学、物理化学组成的完整体系,成为化学发展的黄金时代。

  只见门捷列夫双手像变魔术一样将那副纸牌在桌上变来变去,口中念念有词讲着每一个元素的性质,滚瓜烂熟,如数家珍。他放下红纸牌又拿起绿牌,说了第一族又说第二族,周围的人直听得目瞪口呆,他们这些在实验室钻了十年、几十年,手上也不知被烧起多少伤疤,掉了几层皮的专家、教授,想不到一个青年人玩玩纸牌就能得出这番道理,要说不服气吧,好像有理,要说真是这样,又哪能这样容易。这时突然有人说道:

门捷列夫因发现周期律而获得英国皇家学会戴维奖章。他还曾获英国科普利奖章。1955年科学家们为了纪念元素周期律的发现者门捷列夫,将101号元素命名为钔。门捷列夫运用元素性质周期性的观点写成《化学原理》一书,曾被译成多种文字。

  19世纪无机化学的发展,主要是围绕原子一分子学说的创立、各种新元素的发现和化学元素周期律的最后完成来展开的。

  “先生,我看你那几张牌也未必就能将元素规律演试清楚。你看六年前发现的新元素铟,原子量是75.4应排在砷和硒之间,可是这样一来砷无法和它相似的磷在一族里,硒也被挤出了硫那一族,岂不是扰得四邻不安?这还算什么规律?”

  原于一分于学说,是化学各个分支共同的理论基础,在它创立之前,化学上发现了当量定律、定比定律等一系列的经验定律。

  “先生,莫急。我看那铟的原子量很可怀疑,它的性质和铝相似,按我推算它的原子量应是113.1(后来测得是114.82),它本来就不应该挤在砷后面,应排到镉与锡之间去,这不就大家都相安无事了吗?”

  1791年,德国化学家李希特尔在进行完全化学反应时。发现一定量的一种元素总是和一定量的另一种元素相互作用。在酸碱反应中,他发现中和一定数量的酸,也需要确定的相当数量的碱,反之亦然。于是,他提出了中和定律和当量定律。

  这时,一直坐在旁边看着的齐宁早已气得胡子掀起毛高,他一拍桌子站起来,以师长的严厉声调高声说道:“快收起你这套魔术吧。身为教授、科学家不在实验室里老老实实做实验,却异想天开,摆摆纸牌就要发现什么规律。这些元素难道就由你这样随便摆布吗?”

  法国化学家费歇尔揭示了任何纯净的化学物质在相互化合时,都按照相当的量成比例地进行。在1802年,他制定出早期的酸碱化合当量表。

  门捷列夫一见是老师发了脾气,忙将纸牌收拢,毕恭毕敬地解释道:“不是我不做实验,是前人,戴维、本生、基尔霍夫他们已经做了够多的实验,发现了这么多元素,我们该从理论上做一点思考了。开普勒当年从他的老师第谷手中接过了700颗桓星的观察资料,并没有按照师嘱再去观察第一千颗,他做了理论思考,终于发现了能解绎众星运行的三定律;勒维烈之前有多少人在观察寻找天王星外的新星,他并没有把主要精力放在实地观察,而是做了理论推算,一下就准确地找见了海王星。在研究元素的过程中人们使用的武器够多了,有光,有电,有分馏法,这些都不够了,现在需要理论,化学该有自己强大的理论武器问世了。”

  1799年,法国药剂师普罗斯在大量的实验中,通过定量研究发现,两种或两种以上的元素,在化合成某种化合物时,它们的比例是天然一定的,各种成分既不能增加,也不能减少。于是他在系统的、精密测定的基础上,提出了定比定律。

  “你这是什么理论?像是说梦,像是小孩玩积木。你何不按字母顺序去排元素周期呢?那样不是更省事,更整齐吗?”这齐宁老头越说越激动,一边就收拾皮包准备离去,别人见状也都纷纷站起,这场讨论不了了之。

  普罗斯的定比定律没有立即得到人们的承认,而是引起怀疑和反对。当时,法国化学界的权威贝特雷从“化学亲合力”的角度,认为一种物质可与有相互亲合力的另一种物质以一切比例相化合。直到1860年,比利时化学家斯达才把这一定律确定下来。

  再说门捷列夫回到家里后还是继续推着这副纸牌,遇有哪个地方的顺序接连不上时,他就断定一定还有什么新元素未被发现,暂时补上一张空牌,再根据它所在的族起一个“类铝”或者“类硼”等样的名字。他这样一口气预言了十一种未知元素,那副纸牌也已是74张。自从那天在会上碰了钉子,他闭门谢客,每日起来烛自玩一会儿纸牌,翻几本新到的杂志,便叫助手安东拿过酒瓶自斟自酌,倒也悠闲。这样一连过了几年,忽一日他正品酒翻书,突然大叫一声,将酒杯扔出老远。安东不知出了什么事,急忙推门进来。门捷列夫一下扑上去,双手摇着安东的肩膀喊道:“我们胜利了,他们这回要投降了,有人已经证实了我的预言!”

  随着当量定律和定比定律的发现,人们感到氧化学说不能解释一切化学现象。

  原来他刚才看到一个材料。法国科学院宣布他们的科学家布瓦博德朗在1875年9月发现了一种新元素——镓。而且那发现过程是多么艰苦,多么神秘。这个布瓦博德朗是一个光谱分析的好手,在1875年8月27日深夜3点多钟,他在分析从庇里牛斯山送来的一种闪锌矿时捕捉到一微紫色光线。他对这个新发现没有把握,但又怕别人抢了先,于是连忙写了一个备忘录,用火漆封好,寄交法国科学院备案。又过了三个星期,他手头的这种新物质已经积累到一毫克,他又测了它的比重、原子量,于是就正式宣布他发现了新元素。

  怎样科学地解释在化令物和化学反应中的数量关系呢?人们想到化学元素可能是由占希腊人提出的原子构成的,也可能是玻义耳等人主张的物质微粒所构成的。

  再说门捷列夫见有人发现了新元素,喜得酒杯也扔了,牌也不玩了。但过一会儿他发现市瓦博德朗的测量并不准确,立即提笔写了一封很自信的短信:“先生,您发现的镓,就是我五年前预言的‘类铝’,只是它的比重应该是5.9,而您却测得是4.7,请您再做一次实验,我想大概是您的新物质还不太纯的缘故吧。”

  古希腊哲学家德漠克利特提出了比较系统的原子学说。他认为,原子是一种不可再分的最小的物质粒子,是构成物质世界的统一的物质本原。原子本身具有运动的属性,物质世界的运动,实际是原于的运动。

  这布瓦博德朗在巴黎正为自己的新发现所陶醉,不想突然收到这样一封信。全世界就只有他拥有这么一点钱,这个俄国人由哪里得到的数据呢?他半信半疑立即将新积累的共1/15克钱拿来再仔细测算一次。——天啊,果然是5.94!这个法国人立即给彼得堡回了一信:“尊敬的门捷列夫先生,首先祝贺您的胜利。我能说什么呢?这次实验,连同我的发现都不过是您的元素周期表的一个小注解。这是您的元素周期律的伟大之处的最好证明。”

  玻义耳认为,物质是由基本微粒构成的,微粒的不同排列和组合,构成了各种物质。

  事情没过几天,齐宁也亲自来登门捷列夫的门。这回他手里提着酒瓶,一进门就开朗地喊道:“年轻人你赢了,我们俄国人赢了,让我们一起来痛饮一杯!”

  原子论的创立

  事情还不止于此。这门捷列夫坐在家里,千里之外不断地向他送着捷报。法国刚发现了镓,1879年瑞典人尼里逊又发现了钪,就是门捷列夫曾预言的“类硼”。1885年德国人温克莱尔又发现了锗,就是门捷列夫曾预言的“类硅”。尤其是这锗和门捷列夫十五年前的预言竟然吻合得如此严密。门捷列夫说:”它的原子量可能是72。”温克莱尔说:“测到的是72或73。”门捷列夫说:“比重该是5.5。”温克莱尔说:“是5,47。”门捷列夫说:“新元素的氯化物比重大约是1.9。”温克莱尔说:“是1.887。”门捷列夫惊人的预言,准确的周期表一时间轰动了法国、瑞典、德国,轰动了全欧洲。各国科学院纷纷请他去访问,争先恐后地向他授予学位、学衔。他预言的十一种未知元素后来都一个个被人找到,乖乖地到他的周期表里排队站位去了。特别是后来找齐了的氦、氖、氩、氪、氙、氡又给周期表增加了新的一族。元素世界一目了然,周期表真可谓天衣无缝了。它像一幅大地图,只要我们一展开,万里河山就尽收眼底。以后人们对化学的研究就全靠这幅指南图了。各位读着,这正符合了实践生成理论,理论指导实践的道理。我们前几回书里讲过的勒维烈发现海王星,赫兹发现电磁波,不都是在牛顿和麦克斯韦的理论之后吗?这实在是一条科学发现的相似规律。这种理论上的突破比戴维当年找见一种钠或钾不知重要多少倍,在思维方面付出的艰苦劳动也决不亚于在实验室里的具体操作。当时有人真的以为门捷列夫只是喝酒、玩牌就发现了周期律。有一天,彼得堡的一位小报记者上门采访说:“门捷列夫先生,您是不是承认你是一位天才?”

  但是,无论是原子说还是微粒说,都只是一种猜测,近代化学的物质结构学说需要有可靠的实验事实、精确的定量分析、合理的逻辑论证。

  “什么是天才?终身努力,便成天才!”

  这首先是由英国化学家道尔顿完成的。他所创立的科学的原子论,对化学、物理学乃至整个科学都产生了极为深远的影响。

  “可是我听说您是在一晚上做了一个梦,梦见您桌子上的牌变成一条蛇,这蛇又弯成几折,醒来后就制出了周期表。”

  约翰·道尔顿于1766年9月6日出生在英国坎伯兰郡一个穷乡僻壤的茅屋里。父亲是个贫苦农民兼做织工,由于收人微薄还要养活6个子女,家庭经济相当困难。

  门捷列夫哈哈大笑,笑得胡子都在颤抖,答道:“您要知道,这个问题我大约想了有二十年,而您却以为坐着不动,五个戈比一行、五个戈比一行地写,就写出来了,事情哪有这样简单。”

  尽管家境贫寒,在道尔顿6岁时,父母还是想方设法让他上了本村小学。道尔顿好学深思,成绩优秀。对于一些难题,一般学生在做不出来时,就去请教老师了。但道尔顿有股韧劲,解不出难题决不罢休。

  门捷列夫本来就是学院里有名的教授,周期律发现后他更受学生的欢迎,每天慕名来听课的人挤得连教室的走廊上也插不进一只脚。这天,像往常一样,门捷列夫又来上课,照样是满堂屏气凝神,鸦雀无声。一会讲课结束,学生们又欢呼雀跃,掌声雷动。可是门捷列夫却将讲义合上,示意学生们静下来,走到讲台的前沿。他沉默了片刻,像要说什么,却又说不出,眼里含着愤怒,还闪着一点泪光,最后只说了一句“对不起,同学们。我这是给大家上最后一堂课。希望你们今后认真读书,各自珍重。再见。”

  有时候,为了一个难题,道尔顿要思考几天,老师便想指点一下,道尔顿说:“请不要帮忙,我一定要自己做。”因此,道尔顿深受老师的喜爱,弗莱彻先生称赞说:“在这些孩子中间,就思想的成熟而论,谁也比不上道尔顿。”

  门捷列夫为何突然罢课,请听下回分解。

  几年后,由于家里实在交不起学费,道尔顿被迫辍学。但热爱学习的道尔顿仍然不时地去学校旁听。

  道尔顿在12岁时担任本村小学的教师,一边教书,一边从事田间劳动。

  1781年,15岁的道尔顿外出谋生,来到肯代尔镇,在他表兄办的中学担任教员。在教学之余,他发奋读书,无论是数学、物理,还是哲学、文学,他都爱不释手,广泛阅读。

  1793年,道尔顿受聘到曼彻斯特一所新学院,讲授数学和自然哲学。

  这一年,道尔顿第一部科学著作
《气象观察和研究》在曼彻斯特出版。在这部著作里,道尔顿分析了云的形成、蒸发过程和大气降水量的分布等,总结了他的观测结果,对气象学的形成和发展,起了一定的启蒙作用。

  这部著作的出版,使年仅27岁的青年教师道尔顿引起了科学界的重视。

  在曼彻斯特期间,道尔顿教学负担繁重,又缺乏实验室,妨碍了他对自然界的科学探索。1799年,道尔顿毅然辞去了教授职务,以当家庭教师为业,过着清贫的生活,在科学的道路上不断地探索、研究。

  道尔顿原子论的建立是从对混合气体扩散的考察开始的。

  道尔顿说:“由于长期做气象记录,思考大气成分的性质,我常常感到奇怪,为什么复合的大气,两种或更多种弹性流体的混合物,竟能在外观上构成一种均匀体,在所有力学关系上都同简单的大气一样。”为了了解混合气体的组成和性质,他开始了气体和气体混合物的研究。

  1801年,道尔顿在一组论文中认为,各地的大气都是由氧、氮、二氧化碳和水蒸汽四种主要物质成分的无数微粒或终极质点混合而成的。

  混合是怎样发生的呢?道尔顿指出,气体混合物的形成是因为气体彼此扩散的缘故。

  通过一系列的实验,道尔顿总结出物理学上的气体分压定律:混合气体的总压力等于各组成气体的分压力之和,而每一组成气体的分压力等于该气体独占混合气体原有体积时的压力。这个定律被称为“道尔顿分压定律”,至今仍被广泛应用。

  正是从这里出发,使道尔顿最终走向了有关物质结构和化学反应的原子论道路。

  1802年11月,道尔顿在曼彻斯特学会上宣读了他的第一篇化学论文《组成大气的几种气体或弹性流体的比例的实验研究》,揭示了元素化合存在着某种数量关系。

  元素化合时为什么会表现出这种数量关系呢?要解释这个问题,必须揭开物质构造的秘密。

  道尔顿在研究气体时,提出过微粒的思想。他又想到古希腊的原子论,它认为一切物体都是由不可再分的原子构成的,原子小到不可计量,但是形状、大小和排列都是不同的。

  把两者联系起来,道尔顿觉得物质应该是由微粒或者是由原子构成的,但是必须加以证明,才能成为科学的理论。

  道尔顿最先提出原子量的概念。他以实验为依据,认为物质一定由原子组成,而且原子有一定的大小和质量。但原子的绝对质量非常小,不可能直接测量。于是他把最轻的氢原子的质量规定为
1,并以此为标准来测定其他原子的相对质量,这种相对质量即元素的原子量。

  道尔顿最早规定的一些元素的原子量记载在1803年9月6日的工作日记上,后来他又增补了一些元素的原子量,并对原来的一些原子量数值做了修订。

  道尔顿算出的原子量实际是元素的当量,算出的数值也不够准确。但他提出的原子量概念使过去模糊不清的原子观念有了比较明确的定量依据,并促进了原子量测定工作的普遍开展。

  恩格斯说:“在化学中,特别是由于道尔顿发现了原子量,现已达到的各种结果都有了秩序和相对的可靠性。已经能够有系统,差不多是有计划地向还没有被征服的领域进攻,就像计划周密的围攻一个堡垒一样。”

  1803年10月18日,道尔顿在曼彻斯特“文学哲学学会”上,首次报告了他的化学原子论的要点:

  1.化学元素的最终组成是看不见的、不可再分割的物质粒子,这种粒子就是原子。原子既不能被创造,又不能被消灭,在一切化学变化中保持其性质不变;

  2.同一元素的所有原子,在质量和性质上完全相同;不同元素的原子,在质量和性质上都不同。每种元素以其原子质量为其最基本的特征;

  3.一种元素的原子与另一种元素的原子化合时,它们之间成简单的数值比;

  4.有简单数值比的元素的原子结合时,原子之间就发生化合反应而结合成化合物,化合物的原子称为复杂原子。复杂原子的质量为所含各种元素原子质量的总和。同一化合物的复杂原子,其形状、质量和性质也必然相同。

  道尔顿为了说明自己的理论,设计出一套符号,如:

  氢:⊙

  氮:①

  氧:○

  碳:●

  水:⊙○

  这种表示方法,实际上是化学分子式的早期形式。

  道尔顿还创立了倍比定律。

  他在分析当时已知的氮的三种氧化物——笑气(NO)、一氧化氮(N

  2O)、二氧化氮(NO)中氧的质量百分比时发现,如果把笑气中氧的质量

  2百分比看成一个常数的话,它与一氧化氮、二氧化氮中氧的质量百分比之间存在着简单的整数比关系。

  1804年,道尔顿进行了沼气(甲烷CH)和油气(乙烯CH)这两种气体

  4         2的化学成份的分析实验,发现沼气中碳与氢的比例为4.3∶4,而油气中碳与氢的比例为4.3∶2,沼气中的氢含量为油气中氢含量的两倍。

  倍比定律证实了道尔顿的原子论。因为,如果原子学说符合事实,原子不可分,那么元素必然以整个原子的形式相互化合,如果同一元素在不同化合物中数量不同的话,就只能成为整数比。

  反过来说,如果倍比定律完全正确,也就证明了原子学说的正确性。

  这样,在原子观点的启迪下,道尔顿发现并解释了倍比定律,同时倍比定律的发现又成为他确立原子论的重要基石。

  道尔顿做了大量的实验,进行了复杂的计算,令人信服地证明了借比定律的正确性,为原子学说提供了可靠的实验基础。

  道尔顿认为,化学分解和化学结合是化学科学研究的中心课题。

  他说:“化学分解和化学结合只不过是把终极质点或原子彼此分开,又把它们联合起来而已。要创造一个氢原子或消灭一个氢原子,犹如向太阳系引进一颗新的或消灭一颗原有的行星一样不可能。我们所能进行的一切化学变化无非是把处于化合状态的原子分开和把分离的原子联合起来。”

  当时的化学领域是一堆杂乱无章的观察资料和实验的配料记录,材料的堆积多于材料的整理,虽然质量守恒定律、当量定律、定比定律等化学基本定律已经发现,但还没有用统一的理论来阐明。

  1807年,道尔顿的代表作《化学哲学新体系》一书问世,全面而系统地阐述了他的原子论。

  有人说,“原子论”是古老的,不是道尔顿的首创。但是,道尔顿以前的原子理论不是用来揭示化学的奥秘,而是探秘世界本原的含糊的哲学理论。

  道尔顿说:“有些人总是把我的理论叫做假说,不过请相信我,我的原子论是真理。我所得到的全部实验结果,使我对这一点深信不疑。”

  由于道尔顿的伟大贡献,1808年5月,他被选为曼彻斯特文学哲学学会

  “副会长”。

  1816年,道尔顿被选为法国科学院的通讯院士,受到欧洲科学界的推崇。

  1817年,道尔顿又被选为“文学哲学学会”会长,直至逝世。

  享誉欧洲乃至全世界的道尔顿却不是英国皇家学会的会员。根据惯例,皇家学会不会选任何人为会员,加入者必须自己申请。戴维建议道尔顿提出申请,道尔顿说:“对科学来说,一个科学家摆在哪儿是无关紧要的,重要的是他要对科学作出贡献。”

  1820年,戴维当选为皇家学会会长。因享誉世界的道尔顿竟然不是皇家学会会员,使皇家学会受到巨大压力。戴维没有经过道尔顿的同意,提议他为会员。

  1822年,道尔顿成为英国皇家学会的会员。1826年,英国政府授予他一枚金质勋章。

  1832年,道尔顿被授予牛津大学博士学位。这是牛津大学的最高奖,那时,只有著名物理学家法拉第获得过这一殊荣。

  此外,道尔顿还是柏林科学院名誉院士,莫斯科科学协会会员,慕尼黑科学院名誉会员。

  道尔顿曾用两句话来概括他的成功经验,那就是:“午夜方眠,黎明即起。”

  道尔顿的一生可以说是艰苦奋斗的一生。他性情比较孤独,沉默寡言,然而对科学一往情深,倾注了他的满腔热情和毕生心血。他没有结婚,过着独身生活,原因是“没有时间交女友,谈爱情”。

  每天清晨,道尔顿就起床了,第一件事是到实验室里,扫地抹桌生炉子,准备好一天的实验工作。早饭后,他就走进实验室,开始了紧张的研究工作。在实验室里,他往往一呆就是一整天,常常忘了吃中饭。夜幕降临了,他才依依不舍地去吃晚饭。然后回到房间读书,直到深更半夜。

  他坚持这种方式生活和工作,几十年如一日,是非常不容易的。

  实验用的仪器大多数是道尔顿亲手制作的,实验材料也都是他搜集的不值钱的东西。有一件自制的气压计,度盘是用纸制成的,刻度是用笔划上去的,但却精巧实用。

  由此可见,道尔顿一生在极其艰苦的条件下坚持科学研究是多么地努力,并取得了卓越的成就,更是难能可贵。

  道尔顿在科学上的最大贡献是创立了原子论,抓住了化学学科的核心和最本质的问题,用原子的化合和分解说明了各种现象及化学定律间的内在联系,成为物质结构理论的基础。

  原子论是17世纪末和18世纪初在化学研究中具有划时代意义的成果,对物理学和化学的发展产生了深远的影响。

  道尔顿是世界的骄傲,更是曼彻斯特的骄傲,曼彻斯特人为了表达对道尔顿的崇高敬意,在市政府大厅里竖立了道尔顿的半身雕像,推选他为曼彻斯特市的荣誉市民。

  1844年7月26日晚,78岁高龄的道尔顿做了最后一次气象记录,这时时间正好是9点差一刻。57年来,他每晚都是在这个时候记录下当天的气象数据。

  可是,今天晚上,他的手颤抖着,不听使唤,道尔顿感到已近生命垂危,但是他仍坚强地拿起笔,记录下气压计和温度计的读数,并在最后一格记下了“微雨”两字。他站起身来,忽然发现日期没签上,便又坐了下去……

  几个小时后,这位伟大的科学家已经静静地安息了。

  8月12日,100多辆马车护送着道尔顿的灵枢,曼彻斯特人排成长长的送葬队伍,在哀乐的肃穆声中慢慢地向阿尔德维克墓地移动。

  1962年,曼彻斯特市教育委员会将市立大学工学院命名为道尔顿工学院,并把道尔顿雕像从市政大厅移至学院新落成的现代化教学楼主楼前。道尔顿双眼凝视着前方,好像是在展望未来的科学发展。

  分子学说的证明

  道尔顿的原子论揭示了一切化学现象不过是原子的运动这一化学本质,真正地奠定了化学的科学基础。

  但他的原子论有两个缺陷,一是否定了物质分割的不可穷尽性,认为原子是不可分的最小的物质微粒;二是忽略了原子和分子的区别,把化合物视为复杂原子。

  道尔顿在后期固步自封,阻碍了原子论的进一步发展。